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Abstract This paper represents the second part of a study concerning the so-called
G-multiobjective programming. A new approach to duality in differentiable vector opti-
mization problems is presented. The techniques used are based on the results established
in the paper: On G-invex multiobjective programming. Part I. Optimality by T.Antczak. In
this work, we use a generalization of convexity, namely G-invexity, to prove new duality
results for nonlinear differentiable multiobjective programming problems. For such vector
optimization problems, a number of new vector duality problems is introduced. The so-called
G-Mond–Weir, G-Wolfe and G-mixed dual vector problems to the primal one are defined.
Furthermore, various so-called G-duality theorems are proved between the considered dif-
ferentiable multiobjective programming problem and its nonconvex vector G-dual problems.
Some previous duality results for differentiable multiobjective programming problems turn
out to be special cases of the results described in the paper.

Keywords (strictly) G-invex vector function with respect to η ·
G-Karush–Kuhn–Tucker necessary optimality conditions · G-Mond–Weir vector dual
problems · G-Wolfe vector dual problem · G-mixed vector dual problem

1 Introduction

In the classical theory of duality, the theorems on duality in various senses are based on
convexity assumptions, which are rather restrictive in applications. Many attempts have been
made to weaken these assumptions by introducing various generalized convexity concepts.
In [12], Hanson proved the Karush–Kuhn–Tucker sufficient optimality conditions and the
Wolfe duality results for a wider class of mathematical programming problems involving
functions called invex after the coinage of Craven [7].

T. Antczak (B)
Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Lodz, Poland
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In the recent years, duality in vector optimization has been attracting the interest of many
researches. Such optimization problems with several objectives conflicting with one another
reflect the complexity of the real world and are encountered in various fields. Many authors
have developed the necessary and/or sufficient conditions for (weak) Pareto optimal solutions
in multiobjective programming problems (see, for example, [8,11,16,21,22,24], and others)

On the other hand, the duality theory has been another focal issue for a long time, espe-
cially in convex multiobjective programming problems (see, for example [6,13,17,22], and
others). However, in their most general form, such optimization problems are nonconvex
and therefore difficult to analyze. The focus of attention over the last few years has been
on the development of new classes of generalized convex functions which are more use-
ful tools to prove duality theorems for such optimization problems. An overview of duality
theory for linear and nonlinear cases is presented in Nakayama [20]. In [22], Taninio and
Sawaragi studied the duality theory in multiobjective programming on finite dimensional real
spaces. They gave a generalization of the definition of a saddle point for the vector-valued
Lagrangian function and used the Lagrange multipliers in the dual functional to establish
necessary conditions for Pareto optimality in the primal vector optimization problem. Luc
[18] studied different vector-valued Lagrangian functions and established duality results for
multiobjective programming problems under appropriate convex assumptions. Weir et al.
[23] used the Lagrangian description of a weak minimum to establish quasiduality and weak
and strong duality theorems in the case where the dual optimization problem has the same
objective function as the primal. Egudo and Hanson [10] established some duality results for
differentiable multiobjective programming problems with invex functions. In [15], Kaul et al.
considered Wolfe type and Mond–Weir type duals and generalized duality results of Weir [25]
under weaker invexity assumptions. Craven and Glover [8] proved duality theorems for the
so-called cone invex programs. Giorgi and Guerraggio [11] used the introduced broad classes
of generalized invex vector functions to prove some duality results for both smooth and non-
smooth multiobjective programming problems. Weir and Jeyakumar [26] considered vector
optimization problems in real normed vector spaces and established weak and strong dual-
ity theorems for vector optimization problems with cone pre-invex functions. Bector et al.
[5] established some duality results for the so-called vector valued B-invex programming
problems. In [1], Antczak proved some sufficient optimality conditions and various duality
theorems for differentiable multiobjective problems with (p, r)-invex functions. Jeyakumar
and Mond [14] introduced the class of the so-called V -invex functions to prove some optimal-
ity and duality results for a larger class of differentiable vector optimization problems than
problems under invexity assumption. The results established by Jeyakumar and Mond have
been generalized by Antczak [2] for a large class of multiobjective programming problems
involving V -r -invex functions.

This paper represents the second part of a study concerning the so-called G-multiobjective
programming. In this paper, we formulate new various vector dual problems for differentiable
nonconvex multiobjective programming problems. In this way, we introduce various vector
G-dual problems in the format of Mond–Weir, vector G-dual problem in the sense of Wolfe,
and various vector mixed G-dual problems for the considered multiobjective programming
problem.

In order to establish various duality theorems for the considered differentiable multiob-
jective programming problem with vector G-invex functions, we apply new necessary opti-
mality conditions, the so-called G-Karush–Kuhn–Tucker necessary optimality conditions,
originally introduced in the first part of our consideration (see [4]).

In this work, we introduce a number of models of the so-called vector G-dual problems
in the format of Mond–Weir for the considered multiobjective programming problem. These
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vector G-dual problems are different from vector duals in the sense of Mond–Weir known in
the literature. Various duality results are established by using a Pareto type relation between
the primal and dual objective functions in these vector optimization problems and the concept
of vectorial G-invexity. Also new G-Karush–Kuhn–Tucker necessary optimality conditions
are used to obtain these duality results. Furthermore, two types of converse duality theo-
rems (the so-called G-Mond–Weir converse duality theorems) are established. In this way,
we introduce a new type of Mond–Weir converse duality named no-maximal G-converse
duality. It is well known in the literature that to prove standard converse duality in the for-
mat Mond–Weir it should be assumed that the considered feasible point in Mond–Weir dual
problem is its (weak) maximum point. However, the introduced no-maximal G-converse
duality between vector G-Mond–Weir dual problems and the considered multiobjective pro-
gramming problem (VP) can be proved under weaker assumptions. In order to prove it, we
assume that the point considered in the no-maximal G-converse duality theorem is only
feasible in vector G-Mond–Weir dual problem. But some stronger constraints should be
imposed on the functions Gg and Gh , constituting the introduced vector G-Mond–Weir dual
problems, to prove this result. What is more, for one of the introduced vector G-Mond–
Weir dual problems, the converse duality theorem in the standard form is proved under the
assumption that the considered feasible point in G-Mond–Weir dual problem is its (weak)
maximum point. Whereas the introduced no-maximal G-converse duality theorem between
this vector G-Mond–Weir dual problem and the multiobjective programming problem can
be established under weaker assumptions than the standard converse duality known in the
literature.

Furthermore, we establish a new Wolfe-type duality for a differentiable multiobjective
programming problem with nonconvex functions. For the scalar optimization problem, the
duality problem of Wolfe type was introduced by Wolfe [28]. Wolfe type duality for vector
optimization problems has been considered, for example, in [1,22,23].

The G-Wolfe duality for multiobjective programming formulated in this paper is new and
it is different from the duality of this type known in the literature. The introduced G-Wolfe
duality is designed for differentiable vector optimization problems involving nonconvex func-
tions. In order to prove various G-Wolfe duality theorems between the original multiobjective
programming problem and its vector G-Wolfe dual problem, we introduce the definition of
a so-called vector-valued G-Lagrange function. Our purpose in the G-Wolfe duality is to
attempt to solve the primary multiobjective programming problem. In our formulation, it is
easier to find the desired solution for some class of nonconvex vector dual problems than in
the case of standard vector Wolfe dual problem known in the literature.

Further, a number of vector G-mixed dual problems is introduced for the considered
multiobjective programming problem. To formulate these vector dual problems, we use the
definition of a G-Lagrange function previously defined for G-Wolfe duality. We also establish
various G-mixed dual theorems between the primal multiobjective programming problem
and the introduced vector G-mixed dual problems. These introduced vector G-mixed dual
problems are also new and different from vector mixed dual problems for vector optimization
problems known in the literature.

2 Vector G-invex functions

In this section, we provide some definitions and some results that we shall use in the sequel.
The following convention for equalities and inequalities will be used throughout the paper.

For any x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T , we define:
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(i) x = y if and only if xi = yi for all i = 1, 2, . . . , n;
(ii) x < y if and only if xi < yi for all i = 1, 2, . . . , n;

(iii) x � y if and only if xi ≤ yi for all i = 1, 2, . . . , n;
(iv) x ≤ y if and only if x � y and x �= y, n > 1.

Throughout the paper, we will use the same notation for row and column vectors when
the interpretation is obvious.

Definition 1 A function f : R → R is said to be strictly increasing if and only if

∀x, y ∈ R x < y �⇒ f (x) < f (y).

Let f = ( f1, . . . , fk) : X → Rk be a vector-valued differentiable function defined on
a nonempty open set X ⊂ Rn , and let I fi (X), i = 1, . . . , k, be the range of fi , that is, the
image of X under fi .

In [4], we introduce a definition of a new class of vector-valued nonconvex functions, the
so-called vector G-invex functions. Now, for a reader’s convenience, we recall this definition.

Definition 2 Let f : X → Rk be a vector-valued differentiable function defined on a
nonempty open set X ⊂ Rn , and let u ∈ X . We assume that there exists a differentiable
vector-valued function G f = (

G f1 , . . . , G fk

) : R → Rk such that any its component
G fi : I fi (X) → R is a strictly increasing function on its domain. If, moreover, there exists
a vector-valued function η : X × X → Rn such that, for any i = 1, . . . , k, and all x ∈ X
(x �= u),

G fi ( fi (x)) − G fi ( fi (u)) − G ′
fi

( fi (u)) ∇ fi (u)η(x, u) � 0 (>) , (1)

then f is said to be a (strictly) vector G f -invex function at u on X (with respect to η) (or
shortly, G f -invex function at u on X ). If (1) is satisfied for each u ∈ X , then f is vector
G f -invex on X with respect to η.
If a function fi = 1, . . . , k, satisfies (1), we also say that fi is a G fi -invex function at u on
X with respect to η.

Remark 3 In order to define an analogous class of (strictly) vector G f -incave functions with
respect to η, the direction of the inequality in the definition of these functions should be
changed to the opposite one.

Remark 4 In the case when G fi (a) ≡ a, i = 1, . . . , k, for any a ∈ I fi (X), we obtain a
definition of a vector-valued invex function.

For some properties of a class of vector G-invex functions, the readers are advised to
consult [4] and also, in the scalar case, [3].

3 The G-Karush–Kuhn–Tucker necessary optimality conditions in multiobjective
programming

In this paper, we consider the following multiobjective programming problem (VP):

V -minimize f (x) := ( f1(x), . . . , fk(x))

g(x) � 0,

h(x) = 0,

x ∈ X,

(VP)
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where fi : X → R, i ∈ I = {1, . . . , k}, g j : X → R, j ∈ J = {1, . . . , m}, ht : X → R,
t ∈ T = {1, . . . , p} are differentiable functions on a nonempty open set X ⊂ Rn .

Let D = {x ∈ X : g j (x) � 0, j ∈ J , ht (x) = 0, t ∈ T } be the set of all feasible solutions
for problem (VP). Further, we denote by J (z) := {

j ∈ J : g j (z) = 0
}

the set of inequality
constraint functions active at z ∈ D and by I (z) := {i ∈ I : λi > 0} the objective functions
indices set, for which the corresponding Lagrange multiplier is not equal 0.

For such optimization problems, minimization means in general obtaining (weak) Pareto
optimal solutions in the following sense:

Definition 5 A feasible point x is said to be a Pareto solution (an efficient solution) for (VP)
if and only if there exists no x ∈ D such that

f (x) ≤ f (x).

Definition 6 A feasible point x is said to be a weak Pareto solution (a weakly efficient
solution, a weak minimum) for (VP) if and only if there exists no x ∈ D such that

f (x) < f (x).

In [4], we established the so-called G-Karush–Kuhn–Tucker necessary optimality
conditions for differentiable multiobjective programming problem under the Kuhn-Tucker
constraint qualification. Now, for the reader’s convenience we recall the definition of the
Kuhn–Tucker constraint qualification and the formulation of these necessary optimality con-
ditions. To establish the necessary optimality conditions for the considered multiobjective
programming problem (VP), we need the definition of the Bouligand tangent cone to a set
W ⊂ Rk .

Definition 7 Let W ⊂ Rk . The Bouligand tangent cone to W at z ∈ W is the set C (W, z) of
all vectors q ∈ Rk such that there exist a sequence {zl} in W and a sequence {λl} of strictly
positive real numbers such that,

lim
l→∞zl = z , lim

l→∞λl = 0, lim
l→∞

zl − z

λl
= q.

Remark 8 Note that Lin [16] named any Bouligand tangent vector, that is, any vector
q ∈ C (W, z), a convergence vector for the set W at z.

Definition 9 The multiobjective programming problem (VP) is said to satisfy the Kuhn–
Tucker constraint qualification at x ∈ D if,

C (D, x) = {
d ∈ Rn : ∇g j (x) d � 0, j ∈ J (x) , ∇ht (x)d = 0, t ∈ T

}
.

Now, we modify slightly the G-Karush–Kuhn–Tucker necessary optimality conditions
established in [4]. More exactly, we prove that, if x ∈ D is a (weak) Pareto optimal point,
then there exist Lagrange multipliers λi , i ∈ I , associated with the objective functions, satisfy∑k

i=1 λi = 1.
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Theorem 10 (G-Karush–Kuhn–Tucker necessary optimality conditions) Let x ∈ D be a
Pareto optimal point (a weak Pareto optimal point) in problem (VP). Moreover, we assume
that g satisfies the Kuhn–Tucker constraint qualification at x. Then there exist λ ∈ Rk+,
ξ ∈ Rm+ and µ ∈ R p such that

k∑

i=1

λi G
′
fi

( fi (x)) ∇ fi (x) +
m∑

j=1

ξ j G
′
g j

(
g j (x)

) ∇g j (x) +
p∑

t=1

µt G
′
ht

(ht (x)) ∇ht (x) = 0,

(2)

ξ j
[
Gg j

(
g j (x)

) − Gg j

(
g j (x)

)]
� 0, j ∈ J , ∀x ∈ D, (3)

λ ≥ 0,
k∑

i=1

λi = 1, ξ � 0, (4)

where G fi , i ∈ I, are differentiable real-valued strictly increasing functions defined on
I fi (D), Gg j , j ∈ J, are differentiable real-valued strictly increasing functions defined on
Igi (D), and Ght ,t ∈ T, are differentiable real-valued strictly increasing functions defined
on Iht (D).

Proof The proof of this theorem follows from the G-Karush–Kuhn–Tucker necessary opti-
mality conditions established in [4]. Indeed, by Theorem 16 [4], it follows that there exist
λ̂ ∈ Rk+, ξ̂ ∈ Rm+ and µ̂ ∈ R p such that the conditions (2)–(3) are fulfilled with these
Lagrange multipliers. Therefore, to prove this theorem, it is sufficient only to show that there
exist λ ∈ Rk+, ξ ∈ Rm+ and µ ∈ R p such that

∑k
i=1 λi = 1. We set

λq = λ̂i

1 + ∑k
i=1,i �=q λ̂i

for some q ∈ I (x), (5)

λi = λ̂i

1 + ∑k
i=1,i �=q λ̂i

for i ∈ I , i �= q, (6)

ξ j = ξ̂ j

1 + ∑k
i=1,i �=q λ̂i

for j ∈ J, (7)

µt = µ̂t

1 + ∑k
i=1,i �=q λ̂i

for t ∈ T . (8)

It is not difficult to see that the G-Karush–Kuhn–Tucker necessary optimality conditions
are satisfied with Lagrange multipliers λ ∈ Rk+, ξ ∈ Rm+ and µ ∈ R p satisfying (5)–(8). ��

4 G-Mond–Weir vector duality

Now, in relation to (VP), we consider the following multiobjective dual problem, which is in
the format of Mond–Weir [19]
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f (y) = ( f1(y), f2(y), . . . , fk(y)) → max⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
gi

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η(x, y) � 0, ∀x ∈ D, (G-VMWD1)

m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) � 0,

y ∈ X,

λ ∈ Rk, λ ≥ 0, λe = 1,

ξ ∈ Rm, ξ � 0,

µ ∈ Rq ,

where e = (1, . . . , 1) ∈Rk , G fi , i∈I , are differentiable real-valued strictly increasing func-
tions defined on I fi (X), Gg j , j ∈ J , are differentiable real-valued strictly increasing func-
tions defined on Ig j (X), and Ght , t ∈ T , are differentiable real-valued strictly increasing
functions defined on Iht (X).
We call (G-VMWD1) the G-Mond–Weir vector dual problem for the multiobjective pro-
gramming problem (VP).

Let W1 denote the set of all feasible points of (G-VMWD1) and prX W1 be the pro-
jection of the set W1 on X , that is, prX W1 := {y ∈ X : (y, λ, ξ, µ) ∈ W1}. Moreover, for
a given (y, λ, ξ, µ) ∈ W1, we denote by I (y) the set of objective functions indices for
which a corresponding Lagrange multiplier is positive, that is, I (y) := {i ∈ I : λi > 0},
and, moreover, we denote by T +(y) and T −(y) the sets of equality constraints indices for
which the corresponding Lagrange multiplier is positive and negative, respectively, that is,
T +(y) = {t ∈ T : µt > 0} and T −(y) = {t ∈ T : µt < 0}.

The following lemma which will be used in the sequel, is an immediate consequence of
the introduced definitions of vector-valued G-invex functions and, therefore, its simple proof
will be omitted.

Lemma 11 Let (y, λ, ξ, µ) be any feasible solution in (G-VMWD1). If g is Gg-invex with
respect to η at y ∈ prX W1 on D ∪ prX W1, ht , t ∈ T +(y), is Ght -invex with respect to η at
y ∈ prX W1 on D ∪ prX W1, ht , t ∈ T −(y), is Ght -incave with respect to η at y ∈ prX W1

on D ∪ prX W1, Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y) ∪ T −(y), then
⎡

⎣
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

⎤

⎦ η(x, y) � 0, ∀x ∈ D. (9)

Theorem 12 (G-weak duality) Consider the multiobjective problems (VP) and (G-VMWD1).
Let x and (y, λ, ξ, µ) be any feasible solutions for (VP) and (G-VMWD1), respectively. Fur-
ther, we assume that f is G f -invex with respect to η at y ∈ prX W1 on D ∪ prX W1, g is
Gg-invex with respect to η at y ∈ prX W1 on D ∪ prX W1, ht , t ∈ T +(y), is Ght -invex with
respect to η at y ∈ prX W1 on D ∪ prX W1, ht , t ∈ T −(y), is Ght -incave with respect to η at
y ∈ prX W1 on D ∪ prX W1, Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y)∪ T −(y).
Then f (x) ≮ f (y) .

Proof Let x and (y, λ, ξ, µ) be feasible solutions for (VP) and (G-VMWD1), respectively.
We proceed by contradiction. Suppose that f (x) < f (y). By assumption, f is G f -invex
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with respect to η at y on D ∪ prX W1. Then, by Definition 2, for any i ∈ I ,

G fi ( fi (x)) − G fi ( fi (y)) − G ′
fi

( fi (y)) ∇ fi (y)η(x, y) � 0. (10)

Hence, by f (x) < f (y), it follows that,

fi (x) < fi (y) , i ∈ I. (11)

From Definition 2, it follows that G fi , i ∈ I , are strictly increasing functions on D ∪ prX W1.
Thus, (11) gives

G fi ( fi (x)) < G fi ( fi (y)) , i ∈ I. (12)

Hence, by (10) and (12), we get

G ′
fi

( fi (y)) ∇ fi (u)η(x, y) < 0, i ∈ I.

Since (y, λ, ξ, µ) is feasible in (G-VMWD1), from the constraints of this dual problem
it follows that

k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y)η(x, y) < 0. (13)

By assumption, g is Gg-invex with respect to η at y ∈ prX W1 on D∪ prX W1, ht , t ∈ T +(y),
is Ght -invex with respect to η at y ∈ prX W1 on D ∪ prX W1, ht , t ∈ T −(y), is Ght -incave
with respect to η at y ∈ prX W1 on D ∪ prX W1. Then, by Lemma 11, we have,

⎡

⎣
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

⎤

⎦ η(x, y) � 0. (14)

Adding both sides of (13) and (14), we get the following inequality
[

k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η(x, y) < 0,

which contradicts the first constraint of (G-VMWD1). Thus, the conclusion of theorem is
proved. ��
Theorem 13 (G-weak duality) Consider the multiobjective problems (VP) and (G-VMWD1).
Let x and (y, λ, ξ, µ) be any feasible solutions for (VP) and (G-VMWD1), respectively. Fur-
ther, we assume that f is strictly G f -invex with respect to η at y ∈ prX W1 on D ∪ prX W1,
g is Gg-invex with respect to η at y ∈ prX W1 on D ∪ prX W1, ht , t ∈ T +(y), is Ght -invex
with respect to η at y on D ∪ prX W1, ht , t ∈ T −(y), is Ght -incave with respect to η at
y ∈ prX W1 on D ∪ prX W1, Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y)∪ T −(y).
Then f (x) � f (y) .

Theorem 14 (G-strong duality) Let x ∈ D be a (weak) Pareto solution in (VP) and the
Kuhn–Tucker constraint qualification be satisfied at x. Assume that Ght (0) = 0 for t ∈
T +(x) ∪ T −(x). Then there exist λ ∈ Rk+, ξ ∈ Rm+ , µ ∈ Rq,

(
λ ≥ 0, ξ � 0

)
λ > 0, ξ � 0,

such that
(
x, λ, ξ, µ

)
is feasible for (G-VMWD1). If also G-weak duality (Theorem 12
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or Theorem 13) holds, then
(
x, λ, ξ, µ

)
is a (weak) maximum for (G-VMWD1), and the

objective functions values are equal in problems (VP) and (G-VMWD1).

Proof By assumption, x is a (weak) Pareto solution in (VP). Then, there exist λ ∈ Rk+,
ξ ∈ Rm+ , µ ∈ Rq

(
λ ≥ 0, ξ � 0

)
λ > 0, ξ � 0, such that the G-Karush–Kuhn–Tucker condi-

tions (2)–(4) hold. Thus, the G-Karush–Kuhn–Tucker condition (3)–(4) imply the inequality

m∑

j=1

ξ j Gg j

(
g j (x)

)
� 0. (15)

By assumption, Ght (0) = 0 for t ∈ T +(x) ∪ T −(x). Since x ∈ D, then

p∑

t=1

µt Ght (ht (x)) � 0. (16)

Using the G-Karush–Kuhn–Tucker conditions (2) together with (15) and (16), we obtain the
feasibility of

(
x, λ, ξ, µ

)
in (G-VMWD1). Also, by weak duality (Theorem 12 or Theorem

13), it follows that
(
x, λ, ξ, µ

)
is a (weak) maximum in (G-VMWD1). ��

Theorem 15 (G-converse duality) Let
(
y, λ, ξ, µ

)
be a weak maximum (maximum) in (G-

VMWD1) and y ∈ D. Further, assume that f is (strictly) G f -invex with respect to η at y on
D ∪ prX W1, g is Gg-invex with respect to η at y on D ∪ prX W1, ht , t ∈ T +(y), is Ght -invex
with respect to η at y on D ∪ prX W1 and ht , t ∈ T −(y), is Ght -incave with respect to η at
y on D ∪ prX W1. Then y is a weak Pareto optimal (Pareto optimal) in (VP).

Proof Let
(
y, λ, ξ, µ

)
be a weak maximum in (G-VMWD1) such that y ∈ D. By means of

contradiction, we suppose that there exists x̃ ∈ D such that

f (̃x) < f (y) .

By assumption, f is G f -invex with respect to η at y on D∪ prX W1. Then, from the definition
of G f -invexity, it follows that G fi , i ∈ I , are strictly increasing functions on I fi (X). Thus

G fi ( fi (̃x)) < G fi ( fi (y)) , i ∈ I. (17)

Since λ ≥ 0, then (17) gives

k∑

i=1

λi G fi ( f (̃x)) <

k∑

i=1

λi G fi ( f (y)) . (18)

By assumption,
(
y, λ, ξ, µ

)
is a weak maximum in (G-VMWD1). Then, by the G-Karush–

Kuhn–Tucker necessary optimality condition (3), it follows that

m∑

j=1

ξ j Gg j

(
g j (̃x)

)
�

m∑

j=1

ξ j Gg j

(
g j (y)

)
. (19)

Since y ∈ D and x̃ ∈ D, then

p∑

t=1

µt Ght (ht (̃x)) −
p∑

t=1

µt Ght (ht (y)) = 0. (20)

By assumption, f is G f -invex with respect to η at y on D ∪ prX W1, g is Gg-invex with
respect to η at y on D ∪ prX W1 and ht , t ∈ T +(y), is Ght -invex with respect to η at y on
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D ∪ prX W1, ht , t ∈ T −(y), is Ght -incave with respect to η at y on D ∪ prX W1. Then, by
Definition 2, we have, respectively,

G fi ( fi (̃x)) − G fi ( fi (y)) − G ′
fi

( fi (y))∇ fi (y)η(̃x, y) � 0, i ∈ I,

Gg j

(
g j (̃x)

) − Gg j

(
g j (y)

)
� G ′

g j

(
g j (y)

) ∇g j (y) η(̃x, y), j ∈ J,

Ght (ht (̃x)) − Ght (ht (y)) � G ′
ht

(ht (y)) ∇ht (y)η(̃x, y), t ∈ T +(y),

Ght (ht (̃x)) − Ght (ht (y)) � G ′
ht

(ht (y)) ∇ht (y)η(̃x, y), t ∈ T −(y).

From the feasibility of
(
y, λ, ξ, µ

)
in (G-VMWD1) follows

k∑

i=1

λi G fi ( fi (̃x)) −
k∑

i=1

λi G fi ( fi (y)) �
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y)η(̃x, y) (21)

m∑

j=1

ξ j Gg j

(
g j (̃x)

) −
m∑

j=1

ξ j Gg j

(
g j (y)

)
�

m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) η(̃x, y), (22)

p∑

t=1

µt Ght (ht (̃x)) −
p∑

t=1

µt Ght (ht (y)) �
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)η(̃x, y). (23)

Thus, using (18–20) together with (21–23), we get, respectively,

k∑

i=1

λi G
′
fi

( fi (y))∇ fi (y)η(̃x, y) < 0, (24)

m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) η(̃x, y) � 0, (25)

p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)η(̃x, y) � 0. (26)

Adding both sides of (24)–(26), we obtain the following inequality
[

k∑

i=1

λi G
′
fi

( fi (y))∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η(̃x, y) < 0, (27)

contradicting the feasibility of
(
y, λ, ξ, µ

)
in (G-VMWD1).

Proof for y to be Pareto optimal in (VP) is similar, but f has to be assumed strictly
G f -invex with respect to η at y on D ∪ prX W1. ��
Remark 16 As follows from the proof of the G-converse duality theorem in the standard form
(Theorem 15), the assumption that

(
y, λ, ξ, µ

)
is a (weak) maximum point in the vector dual
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problem (G-VMWD1) can be weakened. Indeed, it is sufficient to assume that
(
y, λ, ξ, µ

)

is only a G-Karush–Kuhn–Tucker point.

Now, we introduce a new kind of converse duality between the multiobjective program-
ming problem (VP) and its vector Mond–Weir dual problem (G-VMWD1). It turns out that
the G-converse duality theorem between multiobjective problems (VP) and (G-VMWD1)
can be proved without assuming that the point

(
y, λ, ξ, µ

)
, being feasible in (G-VMWD1), is

a (weak) maximum in G-Mond–Weir dual problem (G-VMWD1) and also without assuming
that it is a G-Karush–Kuhn–Tucker point. But, in this case, some stronger assumptions have
to imposed on the functions Gg j , j ∈ J , and Ght , t ∈ T .

Theorem 17 (No-maximal G-converse duality) Let
(
y, λ, ξ, µ

)
be a feasible solution in

(G-VMWD1) such that y ∈ D. Further, assume that f is (strictly) G f -invex with respect to
η at y on D ∪ prX W1, g is Gg-invex with respect to η at y on D ∪ prX W1, ht , t ∈ T +(y), is
Ght -invex with respect to η at y on D∪ prX W1 and ht , t ∈ T −(y), is Ght -incave with respect
to η at y on D ∪ prX W1, Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y) ∪ T −(y).
Then y is a weak Pareto optimal (Pareto optimal) solution in (VP).

Proof Let
(
y, λ, ξ, µ

)
be feasible in (G-VMWD1). Suppose, contrary to the result, that y is

not a weak Pareto optimal solution in (VP). Then there exists x̃ ∈ D such that

f (̃x) < f (y) .

In the similar manner, as in proof of Theorem 15, it can be proved that the inequality (24)
is satisfied. By assumption, f is G f -invex with respect to η at y on D ∪ prX W1, Gg-invex
with respect to η at y on D ∪ prX W1, ht , t ∈ T +(y), is Ght -invex with respect to η at y on
D ∪ prX W1 and ht , t ∈ T −(y), is Ght -incave with respect to η at y on D ∪ prX W1. Since(
y, λ, ξ, µ

)
is feasible in (G-VMWD1), then the inequalities (21)–(23) are also fulfilled.

Adding both sides of (22) and (23), we get

m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x)) −
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦

�

⎡

⎣
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

⎤

⎦η(̃x, y). (28)

From Definition 2 follows that Gg j , j ∈ J , is strictly increasing on Ig j (X) and Ght ,
t ∈ T , is strictly increasing on Iht (X). Using Gg j (0) = 0 for j ∈ J and Ght (0) = 0
for t ∈ T +(y) ∪ T −(y) together with

(
y, λ, ξ, µ

) ∈ W , we obtain

m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x)) � 0. (29)

Hence, from the feasibility of
(
y, λ, ξ, µ

)
in (G-VMWD1) and (29), it follows that

m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x)) −
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦� 0.

(30)
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By (28) and (30),

⎡

⎣
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

⎤

⎦ η(̃x, y) � 0. (31)

Adding both sides of (24) and (31), we obtain the inequality (27), which contradicts the
feasibility of

(
y, λ, ξ, µ

)
in (G-VMWD1). ��

Remark 18 Note that, in the case of Pareto optimality, these two G-converse duality theo-
rems can be proved under another restrictions imposed of the functions G f and Gg . Indeed,
in place of strictly G f -invexity assumption of the objective function f , it can be assumed
that at least one of the functions g j , j ∈ J (x), is strictly Gg j -invex, to prove that y is a
Pareto optimal solution in (VP).

Theorem 19 (G-restricted converse duality) Let x and
(
y, λ, ξ, µ

)
be feasible solutions in

(VP) and (G-VMWD1), respectively, such that, for any i ∈ I ,

G fi ( fi (x)) = G fi ( fi (y)) .

Moreover, assume that f is G f -invex with respect to η at y on D ∪ prX W1, g is Gg-invex
with respect to η at y on D ∪ prX W1, ht , t ∈ T +(y), is Ght -invex with respect to η at y
on D ∪ prX W1 and ht , t ∈ T −(y), is Ght -incave with respect to η at y on D ∪ prX W1,
Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y) ∪ T −(y). Then x is weak Pareto

optimal in (VP) and
(
y, λ, ξ, µ

)
is a weak maximum in (G-VMWD1).

Proof This follows on the line of the proof of Theorem 12. ��

Theorem 20 (G-restricted converse duality) Let x and
(
y, λ, ξ, µ

)
be feasible solutions in

(VP) and (G-VMWD1), respectively, such that

G fi ( fi (x)) = G fi ( fi (y)) .

Moreover, assume that f is strictly G f -invex with respect to η at y on D ∪ prX W1, g is
Gg-invex with respect to η at y on D ∪ prX W1, ht , t ∈ T +(y), is Ght -invex with respect to η

at y on D ∪ prX W1 and ht , t ∈ T −(y), is Ght -incave with respect to η at y on D ∪ prX W1,
Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y) ∪ T −(y). Then x is Pareto optimal

in (VP) and
(
y, λ, ξ, µ

)
is maximum in (G-VMWD1).

Proof This follows on the line of the proof of Theorem 13. ��

Now, for the considered multiobjective programming problem (VP), we introduce a new
vector dual problem, which is also in the format of Mond–Weir. In this way, in relation to
(VP), we consider the following vector dual problem
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f (y) = ( f1(y), f2(y), . . . , fk(y)) → max⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η(x, y) � 0, ∀x ∈ D,

m∑

j=1

ξ j
[
Gg j

(
g j (y)

) − Gg j (gi (x))
]

� 0, ∀x ∈ D, (G-VMWD2)

p∑

t=1

µt
[
Ght (ht (y)) − Ght (ht (x))

]
� 0, ∀x ∈ D,

y ∈ X,

λ ∈ Rk, λ ≥ 0, λe = 1,

ξ ∈ Rm, ξ � 0,

µ ∈ Rq ,

where e = (1, . . . ,1) ∈ Rk , and functions G fi , i ∈ I , Gg j , j ∈ J , Ght , t ∈ T , are defined
in the similar manner as in the case of vector G-Mond–Weir dual problem (G-VMWD1).
We will call (G-VMWD2) the vector G-Mond–Weir dual problem with modified constraints.

Let W2 denote the set of all feasible solutions of (G-VMWD2) and prX W2 be the projec-
tion of the set W2 on X , that is, prX W2 := {y ∈ X : (y, λ, ξ, µ) ∈ W2}.

It turns out that various duality theorems between the considered multiobjective pro-
gramming problem (VP) and the introduced vector Mond–Weir dual problem with modified
constraints (G-VMWD2) can be established under weaker assumptions imposed on func-
tions Ggi , j ∈ J and Ght , t ∈ T than in the case of duality results proved between problems
(VP) and (G-VMWD1).

Theorem 21 (G-weak duality) Consider the multiobjective problems (VP) and (G-VMWD2).
Let x and (y, λ, ξ, µ) be any feasible points for (VP) and (G-VMWD2), respectively. Further,
we assume that f is G f -invex with respect to η at y ∈ prX W2 on D ∪ prX W2, g is Gg-invex
with respect to η at y ∈ prX W2 on D ∪ prX W2, ht , t ∈ T +(y), is Ght -invex with respect
to η at y ∈ prX W2 on D ∪ prX W2, and ht , t ∈ T −(y), is Ght -incave with respect to η at
y ∈ prX W2 on D ∪ prX W2. Then f (x) ≮ f (y) .

Proof Let x and (y, λ, ξ, µ) be any feasible points for (VP) and (G-VMWD2), respectively.
We proceed by contradiction. We assume that f (x) < f (y) and exhibit a contradiction. By
assumption, f is G f -invex with respect to η at y on D ∪ prX W2. Then, by Definition 2, for
any i ∈ I ,

G fi ( fi (x)) − G fi ( fi (y)) − G ′
fi

( fi (y)) ∇ fi (y)η(x, y) � 0. (32)

Thus, by f (x) < f (y), we have

fi (x) < fi (y) , i ∈ I. (33)

From Definition 2 follows that G fi is a strictly increasing function on D ∪ prX W2. Thus,
(33) gives

G fi ( fi (x)) < G fi ( fi (y)) , i ∈ I. (34)
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Hence, by (32) and (34), we get

G ′
fi

( fi (y)) ∇ fi (y)η(x, y) < 0, i ∈ I.

Since (y, λ, ξ, µ) is feasible in (G-VMWD2) then, using the constraints of this vector dual
problem, we obtain

k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y)η(x, y) < 0. (35)

By assumption, g is Gg-invex with respect to η at y ∈ prX W2 on D∪ prX W2, ht , t ∈ T +(y),
is Ght -invex with respect to η at y ∈ prX W2 on D∪ prX W2, and ht , t ∈ T −(y), is Ght -incave
with respect to η at y ∈ prX W2 on D ∪ prX W2. Then, by Definition 2, we have, respectively,

m∑

j=1

ξ j Gg j

(
g j (x)

) −
m∑

j=1

ξ j Gg j

(
g j (y)

)
�

m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) η(x, y),

p∑

t=1

µt Ght (ht (x)) −
p∑

t=1

µt Ght (ht (y)) �
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)η(x, y).

Since x ∈ D and (y, λ, ξ, µ) ∈ W2, then the inequalities above yield, respectively,

m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) η(x, y) � 0,

p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)η(x, y) � 0.

Adding both sides of the inequalities above and (35), we obtain
⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η(x, y) < 0,

which contradicts the first constraint of (G-VMWD2). Thus, the conclusion of theorem is
established. ��
Theorem 22 (G-strong duality) Let x ∈ D be a (weak) Pareto solution in (VP) and the
Kuhn–Tucker constraint qualification be satisfied at x. Then there exist λ ∈ Rk+, ξ ∈ Rm+ ,
µ ∈ Rq,

(
λ ≥ 0, ξ � 0

)
λ > 0, ξ � 0, such that

(
x, λ, ξ, µ

)
is feasible for (G-VMWD2).

If also G-weak duality (Theorem 21) holds then
(
x, λ, ξ, µ

)
is a (weak) maximum for (G-

VMWD2), and the objective function values are equal in problems (VP) and (G-VMWD2).

Remark 23 Note that we have established the G-strong duality theorem between the consid-
ered multiobjective programming problem (VP) and its vector dual problem (G-VMWD2)
under weaker assumption imposed on the functions Gg j , j ∈ J (x) and Ght , t ∈ T +(x) ∪
T +(x) than in the case of G-strong duality between problems (VP) and (G-VMWD1).
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This also follows from the fact that G-weak duality theorem between problems (VP) and
(G-VMWD2) has been proved under weaker constraints imposed on the functions Gg j and
Ght than in the case of G-weak duality between problems (VP) and (G-VMWD1).

Analogously, as in the case of vector G-Mond–Weir dual problem (G-VMWD1), we prove
a new kind of converse duality between the multiobjective programming problem (VP) and its
vector G-Mond–Weir dual problem (G-VMWD2). We also called it no-maximal G-converse
duality in the format of Mond–Weir (with modified constraints).

Theorem 24 (No-maximal G-converse duality) Let
(
y, λ, ξ, µ

)
be feasible (G-VMWD2)

and y ∈ D. Further, assume that f is (strictly) G f -invex with respect to η at y on D∪ prX W2,
g is Gg-invex with respect to η at y on D ∪ prX W2, ht , t ∈ T +(y), is Ght -invex with re-
spect to η at y on D ∪ prX W2, and ht , t ∈ T −(y), is Ght -incave with respect to η at y on
D ∪ prX W2. Then y is a weak Pareto optimal (Pareto optimal) in (VP).

Proof Let
(
y, λ, ξ, µ

)
be a feasible solution in (G-VMWD2) such that y ∈ D. By means of

contradiction, we suppose that there exists x̃ ∈ D such that

f (̃x) < f (y) .

By assumption, f is G f -invex with respect to η at y on D∪ prX W2. Then, from the definition
of G f -invexity, G fi , i ∈ I , are strictly increasing functions on I fi (X). Thus,

G fi ( fi (̃x)) < G fi ( fi (y)) , i ∈ I. (36)

Since λ ≥ 0, then (36) gives

k∑

i=1

λi G fi ( f (̃x)) <

k∑

i=1

λi G fi ( f (y)) . (37)

By assumption,
(
y, λ, ξ, µ

)
is feasible in (G-VMWD2). Hence,

m∑

j=1

ξ j Gg j

(
g j (̃x)

)
�

m∑

j=1

ξ j Gg j

(
g j (y)

)
. (38)

Since y ∈ D and x̃ ∈ D, therefore,

p∑

t=1

µt Ght (ht (̃x)) −
p∑

t=1

µt Ght (ht (y)) = 0. (39)

By assumption, f is G f -invex with respect to η at y on D ∪ prX W2, g is Gg-invex with
respect to η at y on D ∪ prX W2, ht , t ∈ T +(y), is Ght -invex with respect to η at y on
D ∪ prX W2, and ht , t ∈ T −(y), is Ght -incave with respect to η at y on D ∪ prX W2. Then
by Definition 2, we have, respectively,

G fi ( fi (̃x)) − G fi ( fi (y)) − G ′
fi

( fi (y)) ∇ fi (y)η(̃x, y) � 0, i ∈ I , (40)

Gg j

(
g j (̃x)

) − Gg j

(
g j (y)

)
� G ′

g j

(
g j (y)

) ∇g j (y) η(̃x, y), j ∈ J , (41)
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Ght (ht (̃x)) − Ght (ht (y)) � G ′
ht

(ht (y)) ∇ht (y)η(̃x, y), t ∈ T +(y), (42)

Ght (ht (̃x)) − Ght (ht (y)) � G ′
ht

(ht (y)) ∇ht (y)η(̃x, y), t ∈ T −(y). (43)

By (37)–(39), we obtain

k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y)η(̃x, y) < 0,

m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) η(̃x, y) � 0,

p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)η(̃x, y) � 0.

Adding both sides of inequalities above, we get
[

k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η(̃x, y) < 0,

contradicting the feasibility of
(
y, λ, ξ, µ

)
in (G-VMWD2).

Proof for y to be Pareto optimal in (VP) is similar, but f has to be assumed strictly G f -
invex with respect to η at y on D ∪ prX W2. ��
Remark 25 We have proved two converse duality theorems for the introduced vector dual
problem (G-VMWD2). Note that one of them, called the no-maximal G-converse duality
theorem (Theorem 24), has been established without assuming that the feasible solution(
y, λ, ξ, µ

)
is a (weak) maximum in (G-VMWD2) as it is assumed in various standard con-

verse duality theorems in the literature. Furthermore, as follows from the proof of Theorem
24, we have proved it also without assuming some extra conditions imposed on the functions
Gg j , j ∈ J and Ght , t ∈ T . Therefore, it is not difficult to see that some weaker hypotheses
have been assumed to prove the introduced no-maximal G-converse duality theorems than
various standard converse duality theorems known in the literature.

Theorem 26 (G-restricted converse duality) Let x and
(
y, λ, ξ, µ

)
be feasible solutions in

(VP) and (G-VMWD2), respectively, such that

G fi ( fi (x)) = G fi ( fi (y)) .

Moreover, assume that f is G f -invex with respect to η at y on D ∪ prX W2, g is Gg-invex
with respect to η at y on D ∪ prX W2, ht , t ∈ T +(y), is Ght -invex with respect to η at y on
D ∪ prX W2, and ht , t ∈ T −(y), is Ght -incave with respect to η at y on D ∪ prX W2. Then
x is weak Pareto optimal in (VP) and

(
y, λ, ξ, µ

)
is a weak maximum in (G-VMWD2).

Proof This follows on the line of the proof of Theorem 21. ��
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5 G-Wolfe duality

To prove some G-Wolfe duality results for the considered multiobjective programming prob-
lem (VP), we define the so-called vector G-Lagrange function LG : X×Rk ×Rm ×R p → Rk

defined by

LG (y, λ, ξ, µ) = diag λ
(
G f1 ( f1(y)) , . . . , G fk ( fk(y))

)T +
m∑

j=1

ξ j Gg j

(
g j (y)

)
e

+
p∑

t=1

µt Ght (ht (y)) e

=
⎛

⎝λ1G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) , . . . ,

λk G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠

where

diag λ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

λ1 0 0 · · · 0
0 λ2 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · · · · 0 λk

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Relative to problem (VP), we consider the following vector G-Wolfe dual:
⎛

⎝G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) , . . . ,

G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠ → max

⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η(x, y) � 0, ∀x ∈ D, (G-VWD)

y ∈ X,

λ ∈ Rk, λ ≥ 0, λe = 1,

ξ ∈ Rm, ξ � 0,

µ ∈ Rq ,

where G fi , i ∈ I , are differentiable real-valued strictly increasing functions defined on
I fi (X), Gg j , j ∈ J , are differentiable real-valued strictly increasing functions defined on
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Ig j (X), and Ght , t ∈ T , are differentiable real-valued strictly increasing functions defined
on Iht (X).

Let W̃ denote the set of all feasible solutions in (G-VWD) and prX W̃ be the projection
of the set W̃ on X , that is, prX W̃ := {

y ∈ X : (y, λ, ξ, µ) ∈ W̃
}
.

Theorem 27 (G-weak duality) Let x and (y, λ, ξ, µ) be any feasible solutions for (VP) and
(G-VWD), respectively. Further, assume that f is G f -invex with respect to η at y ∈ prX W̃
on D ∪ prX W̃ , g is Gg-invex with respect to η at y ∈ prX W̃ on D ∪ prX W̃ , ht , t ∈ T +(y),
is Ght -invex with respect to η at y ∈ prX W̃ on D ∪ prX W̃ , and ht , t ∈ T −(y), is Ght -incave
with respect to η at y ∈ prX W̃ on D ∪ prX W̃ , Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for
t ∈ T +(y) ∪ T −(y). Then

(
G f1 ( f1 (x)) , . . . , G fk ( fk (x))

)
≮

⎛

⎝G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

)

+
p∑

t=1

µt Ght (ht (y)) , . . . , G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠ .

(44)

Proof Let x and (y, λ, ξ, µ) be any feasible solutions for (VP) and (G-VWD), respectively.
We proceed by, contradiction. Suppose that

(
G f1 ( f1 (x)) , . . . , G fk ( fk (x))

)
<

⎛

⎝G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

)

+
p∑

t=1

µt Ght (ht (y)) , . . . , G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠ .

(45)

Therefore, for any i ∈ I ,

G fi ( fi (x)) − G fi ( fi (y)) <

m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) . (46)

Since λ ≥ 0, then (46) gives

k∑

i=1

λi G fi ( fi (x)) −
k∑

i=1

λi G fi ( fi (y)) <

k∑

i=1

λi

⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦.

From the feasibility of (y, λ, ξ, µ) in (G-VWD), we have
∑k

i=1 λi = 1. Then, the inequality
above implies

k∑

i=1

λi G fi ( fi (x)) −
k∑

i=1

λi G fi ( fi (y)) <

m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) . (47)

From x ∈ D follows that g j (x) � 0, j ∈ J and ht (x) = 0, t ∈ T . Since Gg j for j ∈ J and
Ght for t ∈ T are strictly increasing functions on their domains, then

Gg j

(
g j (x)

)
� Gg j (0) , j ∈ J, (48)
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Ght (ht (x)) = Ght (0) , t ∈ T . (49)

By assumption, Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y) ∪ T −(y). Therefore,
(48) and (49) yield, respectively,

Gg j

(
g j (x)

)
� 0, j ∈ J,

Ght (ht (x)) = 0, t ∈ T +(y) ∪ T −(y).

Thus, from the feasibility of (y, λ, ξ, µ) in (G-VWD), it follows that

m∑

j=1

ξ j Gg j

(
g j (x)

) +
p∑

t=1

µt Ght (ht (x)) � 0. (50)

By assumption, f is G f -invex with respect to η at y ∈ prX W̃ on D ∪ prX W̃ , g is Gg-in-
vex with respect to η at y ∈ prX W̃ on D ∪ prX W̃ , ht , t ∈ T +(y), is Ght -invex with respect
to η at y ∈ prX W̃ on D ∪ prX W̃ , and ht , t ∈ T −(y), is Ght -incave with respect to η at
y ∈ prX W̃ on D ∪ prX W̃ . Then, by Definition 2, we have, respectively,

G fi ( fi (x)) − G fi ( fi (y)) − G ′
fi

( fi (y)) ∇ fi (y)η(x, y) � 0, i ∈ I ,

Gg j

(
g j (x)

) − Gg j

(
g j (y)

)
� G ′

g j

(
g j (y)

) ∇g j (y) η(x, y), j ∈ J ,

Ght (ht (x)) − Ght (ht (y)) � G ′
ht

(ht (y)) ∇ht (y)η(x, y), t ∈ T +(y),

Ght (ht (x)) − Ght (ht (y)) � G ′
ht

(ht (y)) ∇ht (y)η(x, y), t ∈ T −(y).

From the feasibility of (y, λ, ξ, µ) in (G-VWD), it follows that

k∑

i=1

λi G fi ( fi (x)) −
k∑

i=1

λi G fi ( fi (y)) �
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y)η(x, y) (51)

m∑

j=1

ξ j Gg j

(
g j (x)

) −
m∑

j=1

ξ j Gg j

(
g j (y)

)
�

m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) η(x, y), (52)

p∑

t=1

µt Ght (ht (x)) −
p∑

t=1

µt Ght (ht (y)) �
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)η(x, y). (53)

By (47) and (51),

m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) >

k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y)η(x, y). (54)

Adding both sides of inequalities (52)–(54), we get

m∑

j=1

ξ j Gg j

(
g j (x)

) +
p∑

t=1

µt Ght (ht (x)) �
[

k∑

i=1

λi G
′
fi

( fi (y))∇ fi (y)

+
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

⎤

⎦ η(x, y)
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Using (50), we obtain the following inequality
[

k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y)

]

η(x, y) < 0

contradicting the feasibility of (y, λ, ξ, µ) in (G-VWD). ��

Now, we prove G-weak duality theorem under invexity assumption imposed on the
G-Lagrange function LG .

Theorem 28 (G-weak duality) Let x and (y, λ, ξ, µ) be any feasible solutions for (VP)
and (G-VWD), respectively. Further, assume that the G-Lagrange function LG is invex with
respect to η at y ∈ prX W̃ on D ∪ prX W̃ , Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for
t ∈ T +(y) ∪ T −(y). Then

(
G f1 ( f1 (x)) , . . . , G fk ( fk (x))

)
≮

⎛

⎝G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

)

+
p∑

t=1

µt Ght (ht (y)) , . . . , G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠

Proof Let x and (y, λ, ξ, µ) be any feasible solutions for (VP) and (G-VWD), respectively.
We proceed by contradiction. Suppose that

(
G f1 ( f1 (x)) , . . . , G fk ( fk (x))

)
<

⎛

⎝G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

)

+
p∑

t=1

µt Ght (ht (y)) , . . . , G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠ .

In the similar manner as in the proof of Theorem 27, we obtain the inequality (47). By
assumption, Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y) ∪ T −(y). Then, from the
feasibility of x in (VP) and (y, λ, ξ, µ) in (G-VWD) follows that

m∑

j=1

ξ j Gg j

(
g j (x)

) +
p∑

t=1

µt Ght (ht (x)) � 0. (55)

By (47) and (55), we get

k∑

i=1

λi G fi ( fi (x)) +
m∑

j=1

ξ j Gg j

(
g j (x)

) +
p∑

t=1

µt Ght (ht (x))

<

k∑

i=1

λi G fi ( fi (y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) . (56)
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By assumption, the G-Lagrange function LG is invex with respect to η at y ∈ prX W̃ on
D ∪ prX W̃ . Then, by Remark 4, it follows that

LG (x, λ, ξ, µ) − LG (y, λ, ξ, µ) � ∇LG (y, λ, ξ, µ) η (x, y) .

Hence, from the definition of the G-Lagrange function, it follows for any i = 1, . . . , k,

λi G fi ( fi (x)) +
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (x)

) +
p∑

t=1

µt Ght (ht (x))

⎤

⎦

−λi G fi ( fi (y)) −
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦

�

⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y))∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η (x, y) .

Adding both sides of the inequalities above and using
k∑

i=1
λi = 1, we get

k∑

i=1

λi G fi ( fi (x)) +
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (x)

) +
p∑

t=1

µt Ght (ht (x))

⎤

⎦

−
⎛

⎝
k∑

i=1

λi G fi ( fi (y)) +
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦

⎞

⎠

�

⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η (x, y) . (57)

By (56) and (57), it follows that the following inequality
⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

⎤

⎦

η (x, y) < 0

holds. But this is a contradiction to the feasibility of (y, λ, ξ, µ) in (G-VWD). ��
Theorem 29 (G-strong duality) Let x be a (weak) Pareto optimal solution in (VP) and the
Kuhn–Tucker constraint qualification be satisfied at x. Then there exist λ ∈ Rk+, ξ ∈ Rm+ ,
µ ∈ Rq such that

(
x, λ, ξ, µ

)
is feasible for (G-VWD) and the objective functions of (VP)

and (G-VWD) are equal at these points. If also G-weak duality (Theorem 27) between (VP)
and (G-VWD) holds, then

(
x, λ, ξ, µ

)
is a (weak) maximum point in (G-VWD).
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Theorem 30 (G-converse duality) Let
(
y, λ, ξ, µ

)
be a (weak) maximum in (G-VWD) and

y ∈ D. Moreover, assume that the (strictly) G-Lagrange function is invex with respect η at
y on D ∪ prX W̃ . Then y is (weak) Pareto optimal in (VP).

Proof Let
(
y, λ, ξ, µ

)
be a (weak) maximum in (G-VWD) such that y ∈ D. Suppose, con-

trary to the result, that y is not a weak Pareto optimal point for (VP), that is, there exists
x̃ ∈ D such that

f (̃x) < f (y) .

From the definition G fi , i ∈ I , is a strictly increasing function on I fi (X). Thus,

G fi ( fi (̃x)) < G fi ( fi (y)) . (58)

By assumption,
(
y, λ, ξ , µ

)
is a weak maximum in (G-VWD). Hence, by the G-Karush–

Kuhn–Tucker necessary optimality condition (3),

m∑

j=1

ξ j Gg j

(
g j (̃x)

)
�

m∑

j=1

ξ j Gg j

(
g j (y)

)
. (59)

Since x̃ ∈ D and y ∈ D, then

p∑

t=1

µt Ght (ht (̃x)) −
p∑

t=1

µt Ght (ht (y)) = 0. (60)

By (58)–(60), we get for any i = 1, . . . , k,

(
G f1 ( f1(̃x)) , . . . , G fk ( fk (̃x))

) +
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x))

⎤

⎦ e

<
(
G f1 ( f1(y)) , . . . , G fk ( fk(y))

) +
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦ e.

(61)

Since λi ≥ 0, i ∈ I , then (61) yields

k∑

i=1

λi G fi ( fi (̃x)) +
k∑

i=1

λi

⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x))

⎤

⎦

<

k∑

i=1

λi G fi ( fi (y)) +
k∑

i=1

λi

⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦ .

From the feasibility of
(
y, λ, ξ, µ

)
in (G-VWD), we have

∑k
i=1 λi = 1. Then, the inequality

above implies

k∑

i=1

λi G fi ( fi (̃x)) +
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x))

⎤

⎦

<

k∑

i=1

λi G fi ( fi (y)) +
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦ . (62)
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By assumption, the G-Lagrange function LG is invex with respect to η at y ∈ prX W̃ on
D ∪ prX W̃ . Then, by Remark 4, it follows that

LG
(
x̃, λ, ξ, µ

) − LG
(
y, µ, ξ, µ

)
� ∇LG

(
y, µ, ξ, µ

)
η (̃x, y) .

Hence, from the definition of the G-Lagrange function, it follows for any i = 1, . . . , k,

λi G fi ( fi (̃x)) +
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x))

⎤

⎦ −
(

λi G fi ( fi (y))

+
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦

⎞

⎠ ≥
⎡

⎣λi G
′
fi

( fi (y)) ∇ fi (y)

+
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y))∇ht (y)

⎤

⎦ η (̃x, y)

Adding both sides of the inequalities above and using
∑k

i=1 λi = 1, we get

k∑

i=1

λi G fi ( fi (̃x)) +
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x))

⎤

⎦ −
k∑

i=1

λi G fi ( fi (y))

−
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦ ≥
[

k∑

i=1

λi G
′
fi

( fi (y))∇ fi (y)

+
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y))∇ht (y)

⎤

⎦ η (̃x, y) . (63)

By (62) and (63), we obtain the following inequality
⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

⎤

⎦

η (̃x, y) < 0

which contradicts the dual constraint of problem (G-VWD). Thus, the conclusion of theorem
is proved. ��
Theorem 31 (G-restricted converse duality) Let x and

(
y, λ, ξ, µ

)
be feasible solutions in

(VP) and (G-VWD), respectively, such that
(
G f1 ( f1(x)) , . . . , G fk ( fk(x))

) = (
G f1 ( f1(y)) , . . . , G fk ( fk(y))

)

+
⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦ e.

Moreover, assume that, for any fixed λ̄ ∈ Rk, λ̄ ≥ 0, ξ̄ ∈ Rm, ξ̄ � 0, µ̄ ∈ R p, the G-Lagrange
function is (invex) strictly invex at y on D ∪ prX W̃ with respect to η. Then x is (weak Pareto
optimal) Pareto optimal in (VP) and

(
y, λ, ξ, µ

)
is a (weak maximum) maximum in (G-VWD).

Proof Follows directly from the weak duality theorem (Theorem 28). ��
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6 G-mixed vector duality

In this section, we introduce two new vector dual problems for the considered multiobjec-
tive programming problem (VP). We will call them G-mixed vector dual problems for the
multiobjective programming problem (VP).

Now, relative to the primal multiobjective programming problem (VP), we consider the
following vector dual problem:

⎛

⎝G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) , . . . ,

G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠ → max

⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η (x, y) � 0, ∀x ∈ D,

m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) � 0, (G-VMD1)

y ∈ X,

λ ∈ Rk , λ ≥ 0, λT e = 1,

ξ ∈ Rm , ξ � 0,

µ ∈ Rq ,

where G fi , i ∈ I , are differentiable real-valued strictly increasing functions defined on
I fi (X), Gg j , j ∈ J , are differentiable real-valued strictly increasing functions defined on
Ig j (X), and Ght , t ∈ T , are differentiable real-valued strictly increasing functions defined
on Iht (X). Since the set of all feasible solutions for problem (G-VMD1) is the same as the
set of all feasible solutions for problem (G-VMWD1), we denote it by W1.

Theorems 32–35 contain some results for the vector dual problem (G-VMD1). Their
proofs are similar to the proofs of Theorems 27–30 and therefore are omitted.

Theorem 32 (G-weak mixed duality) Let x and (y, λ, ξ, µ) be any feasible solutions for
(VP) and (G-VMD1), respectively. Further, assume that f is G f -invex with respect to η at
y ∈ prX W1 on D∪ prX W1, g is Gg-invex with respect to η at y ∈ prX W1 on D∪ prX W1, ht ,
t ∈ T +(y), is Ght -invex with respect to η at y ∈ prX W1 on D ∪ prX W1, and ht , t ∈ T −(y),
is Ght -incave with respect to η at y ∈ prX W1 on D ∪ prX W1, Gg j (0) = 0 for j ∈ J and
Ght (0) = 0 for t ∈ T +(y) ∪ T −(y). Then
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(
G f1 ( f1 (x)) , . . . , G fk ( fk (x))

)
≮

⎛

⎝G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

)

+
p∑

t=1

µt Ght (ht (y)) , . . . , G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠ .

(64)

Theorem 33 (G-weak mixed duality) Let x and (y, λ, ξ, µ) be any feasible points for (VP)
and (G-VMD1), respectively. If the G-Lagrange function is invex with respect to η at y on
D ∪ prX W1, Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y) ∪ T −(y), then the
relation (64) is fulfilled.

Theorem 34 (G-strong mixed duality) Let x be a (weak) Pareto optimal in (VP) and the
Kuhn–Tucker constraint qualification be satisfied at x. Then there exist λ ∈ Rk+, ξ ∈ Rm+ ,
µ ∈ R p such that

(
x, λ, ξ, µ

)
is feasible for (G-VMD1) and the objective functions of (VP)

and (G-VMD1) are equal at these points. If also G-weak duality (Theorem 32) between (VP)
and (G-VMD1) holds, then

(
x, λ, ξ, µ

)
is a (weak) maximum point for (G-VMD1).

Theorem 35 (G-converse mixed duality) Let
(
y, λ, ξ, µ

)
be a (weak) maximum for (G-

VMD1) such that y ∈ D. Moreover, we assume that the G-Lagrange function is invex with
respect η at y on D ∪ prX W1. Then y is (weak) Pareto optimal in (VP).

Theorem 36 (No-maximal G-converse mixed duality) Let
(
y, λ, ξ, µ

)
be a feasible solu-

tion for (G-VMD1) such that y ∈ D. Moreover, we assume that the G-Lagrange function
is (invex) strictly invex with respect η at y on D ∪ prX W1, Gg j (0) = 0 for j ∈ J and
Ght (0) = 0 for t ∈ T +(y) ∪ T −(y). Then y is (weak) Pareto optimal in (VP).

Proof Let
(
y, λ, ξ, µ

)
be feasible in (G-VMD1) such that y ∈ D. Suppose, contrary to the

result, that y is not a weak Pareto optimal solution in (VP). Then there exists x̃ ∈ D such that

f (̃x) < f (y) .

From the definition of G-invexity, every function G fi , i ∈ I , is strictly increasing on its
domain. Therefore, for any i ∈ I , the above inequality yields

G fi ( fi (̃x)) < G fi ( fi (y)) .

Since λ ≥ 0, then the inequalities above imply

k∑

i=1

λi G fi ( fi (̃x)) <

k∑

i=1

λi G fi ( fi (y)) . (65)

By assumption, the G-Lagrange function LG is invex with respect to η at y on D ∪ prX W1.
Thus,

LG
(
x̃, λ, ξ, µ

) − LG
(
y, λ, ξ, µ

)
� ∇LG

(
y, λ, ξ, µ

)
η (̃x, y) . (66)
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Since
(
x, λ, ξ, µ

)
is feasible for (G-VMD1) then, using the definition of the G-Lagrange

function LG , we get, for any i ∈ I ,

λi G fi ( fi (̃x)) +
m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x)) − λi G fi ( fi (y))

⎡

⎣
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦ �
[
G ′

fi
( f (y))∇ fi (y)

+
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y))∇ht (y)

⎤

⎦ η(̃x, y)

(67)

Adding both sides of the above inequalities and using
k∑

i=1
λi = 1, we obtain

k∑

i=1

λi G fi ( fi (̃x)) +
m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x)) −
[

k∑

i=1

λi G fi ( fi (y))

+
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎤

⎦ �
[

k∑

i=1

G ′
fi

( f (y))∇ fi (y)

+
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

⎤

⎦ η(̃x, y) (68)

By assumption, Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y) ∪ T −(y). Moreover,
Gg j , j ∈ J and Ght t ∈ T +(y) ∪ T −(y). Therefore, from x̃ ∈ D, it follows that

m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x)) � 0. (69)

Hence, from the feasibility of
(
x, λ, ξ, µ

)
in (G-VMD1), we obtain

m∑

j=1

ξ j Gg j

(
g j (̃x)

) +
p∑

t=1

µt Ght (ht (̃x)) �
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) . (70)

By (65), (68) and (70), it follows that the following inequality

⎡

⎣
k∑

i=1

λi G
′
fi

( f (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y) +
p∑

t=1

µt G
′
ht

(ht (y))∇ht (y)

⎤

⎦

η(̃x, y) < 0

holds, which contradicts the feasibility of
(
y, λ, ξ, µ

)
in (G-VMWD1). ��
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Based on the vector dual problem (G-VMWD2) in the format of Mond–Weir, in relation
to (VP), we construct the following multiobjective dual problem

⎛

⎝G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) , . . . ,

G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠ → max

⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η (x, y) � 0,∀x ∈ D,

m∑

j=1
ξ j Gg j

(
g j (y)

)
� 0,

p∑

t=1

µt Ght (ht (y)) � 0,

(G-VMD2)

y ∈ X,

λ ∈ Rk, λ ≥ 0, λT e = 1,

ξ ∈ Rm, ξ � 0,

µ ∈ Rq .

Analogously as for the vector G-mixed dual problem (G-VMD1), the same G-duality
theorems are true for the considered vector mixed dual problem (G-VMD2). Also proofs
for corresponding duality results for the above multiobjective dual problem run on the same
lines as the proofs of the Theorems 32–36. Therefore, they were also omitted in this work.

7 Conclusion

In this paper, we have introduced several vector dual problems for the considered differentia-
ble multiobjective programming problem with both inequality and equality constraints. The
so-called vector G-dual problem in the sense of Mond–Weir, the vector G-dual problem in the
sense of Wolfe and the vector G-mixed dual problem presented in this work are different from
vector dual problems known in the literature. Various duality theorems between the primal
multiobjective problem and the introduced vector G-dual problems have been proved under
the assumption that the functions constituting these vector optimization problems are vector
G-invex functions with respect to the same function η and with respect to, not necessarily,
the same function G or under the assumption that the so-called G-Lagrange function (also
introduced in this paper) is invex. This paper extends entirely earlier works, in which duality
results have been obtained for a multiobjective programming problem by applying convex-
ity, generalized convexity and even invexity assumptions imposed on functions involved in
a multiobjective programming problem (see, for example, [6,9,15,23,27]). Further, we have
considered two types of converse duality for the introduced vector G-dual problems. One
of them corresponds with the standard converse duality known in the literature. However,
the second one, called no-maximal G-converse duality, is a new type of duality results for
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multiobjective programming problems. As it is known from the literature, to prove the stan-
dard converse duality theorems (and also the standard G-converse duality theorems consid-
ered in this paper), it is assumed that the considered feasible solution

(
y, λ, ξ, µ

)
is (weak)

maximal in these vector dual problems and y belongs to the set of all feasible solutions
in the primal multiobjective programming problem (in fact, it is sufficient to assume that(
y, λ, ξ, µ

)
is a feasible solution satisfying the G-Karush–Kuhn–Tucker necessary optimal-

ity conditions). However, to prove the introduced no-maximal G-dual converse theorems, it
is sufficient to assume that

(
y, λ, ξ, µ

)
is a feasible solution in the vector dual problem and

y ∈ D. Moreover, some stronger assumptions should be imposed on the functions Gg j , j ∈ J
and Ght , t ∈ T +(y) ∪ T −(y) associated with inequality and equality constraints constitut-
ing the primal multiobjective programming problem (VP). Indeed, we have assumed that
these functions satisfy the following conditions Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for
t ∈ T +(y)∪ T −(y). Furthermore, it turns out that if we modify slightly constraints of vector
G-dual problems in the sense of Mond–Weir and G-mixed dual problems, then we can estab-
lish these new converse duality theorems without assuming extra assumptions imposed on the
functions Gg j , j ∈ J and Ght , t ∈ T +(y) ∪ T −(y). Thus, it is not difficult to see that some
stronger hypotheses should be assumed to prove standard converse duality theorems known
in the literature than for proving the introduced no-maximal G-dual converse theorems. For
example, if we transform the vector G-mixed dual problem (G-VMD1) to the following form

⎛

⎝G f1 ( f1(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y)) , . . . ,

G fk ( fk(y)) +
m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

⎞

⎠ → max

⎡

⎣
k∑

i=1

λi G
′
fi

( fi (y)) ∇ fi (y) +
m∑

j=1

ξ j G
′
g j

(
g j (y)

) ∇g j (y)

+
p∑

t=1

µt G
′
ht

(ht (y)) ∇ht (y)

]

η (x, y) � 0, ∀x ∈ D,

m∑

j=1

ξ j Gg j

(
g j (y)

) +
p∑

t=1

µt Ght (ht (y))

�
m∑

j=1

ξ j Gg j

(
g j (x)

) +
p∑

t=1

µt Ght (ht (x)) , ∀x ∈ D, (G-VMD3)

y ∈ X,

λ ∈ Rk, λ ≥ 0, λT e = 1,

ξ ∈ Rm, ξ � 0,

µ ∈ Rq ,

then the no-maximal G-converse duality theorem for such a vector G-dual problem can be
proved without assuming that Gg j (0) = 0 for j ∈ J and Ght (0) = 0 for t ∈ T +(y)∪T −(y).
As follows from this example, some weaker conditions imposed on the functions constituting
the G-mixed dual problem with modified constraints are assumed to prove the no–maximal
G-converse duality theorem than for the standard converse dual theorem. The same is valid
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for the other introduced vector G-dual problems in the format of Mond–Weir and vector
G-mixed dual problems. Indeed, if the second constraints of these vector dual problems are
modified in the same way (as it has been shown above for the vector G-mixed dual prob-
lem (G-VMD1)), then G-no-maximal converse duality theorems can be established without
assuming some extra condition imposed on the functions Gg j , j ∈ J and Ght , t ∈ T (see also
proofs of weak and converse duality theorems for the vector G-dual problem in the format
of Mond–Weir (G-VMWD2)).
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